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Abstract

Background: Acute lymphoblastic leukemia (ALL) is the most
common childhood cancer, suggesting that germline variants
influence ALL risk. Although multiple genome-wide association
(GWA) studies have identified variants predisposing children to
ALL, it remains unclear whether genetic heterogeneity affects ALL
susceptibility and how interactions within and among genes
containing ALL-associated variants influence ALL risk.

Methods: Here, we jointly analyzed two published datasets of
case–control GWA summary statistics along with germline data
from ALL case–parent trios. We used the gene-level association
method PEGASUS to identify genes with multiple variants associ-
ated with ALL. We then used PEGASUS gene scores as input to the
network analysis algorithm HotNet2 to characterize the genomic
architecture of ALL.

Results:Using PEGASUS, we confirmed associations previous-
ly observed at genes such as ARID5B, IKZF1, CDKN2A/2B, and

PIP4K2A, and we identified novel candidate gene associations.
Using HotNet2, we uncovered significant gene subnetworks that
may underlie inherited ALL risk: a subnetwork involved in B-cell
differentiation containing the ALL-associated gene CEBPE, and a
subnetwork of homeobox genes, including MEIS1.

Conclusions: Gene and network analysis uncovered loci
associated with ALL that are missed by GWA studies, such as
MEIS1. Furthermore, ALL-associated loci do not appear to
interact directly with each other to influence ALL risk, and
instead appear to influence leukemogenesis through multiple,
complex pathways.

Impact: We present a new pipeline for post hoc analysis of
association studies that yields new insight into the etiology of
ALL and can be applied in future studies to shed light on the
genomic underpinnings of cancer. Cancer Epidemiol Biomarkers Prev;
26(10); 1531–9. �2017 AACR.

Introduction
Acute lymphoblastic leukemia (ALL) is the most common

childhood cancer in Western countries, with a peak incidence
range of 2 to 5 years of age (1–3). The early age of onset suggests
that the etiology of ALLbegins very early in development, possibly
prenatally (4, 5). The risk of ALL also increases significantly in
patients with certain congenital syndromes, such as Down syn-
drome and ataxia-telangiectasia (6, 7). In addition, there is a

significantly higher risk of ALL in siblings of affected cases com-
pared with those without ALL siblings, which is particularly
evident in concordant cases of ALL in monozygotic twins
(1, 2). Taken together, these observations suggest that germline
genetic variation may contribute to ALL susceptibility; however,
the genetic mechanisms that generate predisposition to ALL are
not completely understood.

Development of childhood ALL is thought to be caused by (i)
chromosomal translocations (such as TEL-AML1 fusions) or
hyperdiploidy, which can happen in utero, followed by (ii) sec-
ondary somatic gene deletions or mutations that ultimately lead
to disease (1, 2). Different underlying causes for the second,
crucial step in the natural history of ALL (gene deletions or
mutations that cause ALL) have been postulated, including aber-
rant reactions to infections in infancy and genetic variation in
immune-response pathways (1). Germline variation can influ-
ence either step in this process, and case–control genome-wide
association (GWA) studies have successfully identified ALL-asso-
ciated SNPs in genes including ARID5B, IKZF1, CEBPE, PIP4K2A,
CDKN2A/2B, andGATA3 (8–15). Supplementary Table S1 shows
genes containing variants that have been associated with ALL in at
least two GWA studies at a genome-wide significant level (P < 5�
10�8). In spite of these findings, it remains unknown to what
extent these genes interact to affect ALL risk.

Recent work from our group and others has yielded novel
methods for exploring gene networks in the context of a GWA
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framework (16–23), including an analysis of gene sets associated
with ALL by Hsu and colleagues (24), which is discussed in detail
later. In the gene-level method, PEGASUS (20), association P
values are combined within genes while correcting for linkage
disequilibrium (LD); this approach allows us to account for
genetic heterogeneity, when different causal mutations of small
effect in the same gene or pathway may be present across cases,
and to test for genes and pathways significantly associated with
ALL. Because several ALL susceptibility genes are known to play
integral roles in lymphoid development, cell type differentiation,
and leukemogenesis, it is important to determine whether these
genes act in concert or separately in ALL patients. Using PEGASUS
gene scores as input into gene set or pathway analysis allows us
to test for gene interaction subnetworks that are significantly
enriched for genes associated with ALL.

To identify genes and gene subnetworks influencing genetic
predisposition for ALL, we analyzed two datasets of P values from
previously published case–control ALL GWA studies (14, 15) and
P values from an ALL case–parent trio study (25, 26). We used the
gene-level association method PEGASUS (20) to identify novel
candidate genes associatedwith ALL.We then applied the gene set
enrichment method DAVID (17, 18) to identify enriched func-
tional categories in PEGASUS-identified gene-level associations
with ALL. The PEGASUS gene-level P values or "gene scores" were
then used as input to the HotNet2 algorithm (27) to uncover
multiple novel gene interaction subnetworks that are significantly
associated with ALL, shedding light on the underlying biological
mechanisms that may cause genetic predisposition to ALL.

Materials and Methods
Subjects/datasets

For the "discovery stage," we analyzed data from a case–control
study of ALLwith 1,773 affected children (see ref. 15 for details on
the original study). Briefly, genome-wide SNP-level P values for
247,505 variants across the exome were obtained on 1,773
children of European descent with B-ALL and 10,448 non-ALL
controls of European descent (15). All individuals were geno-
typed using the Illumina Infinium HumanExome array.

For the "replication stage," we analyzed data from an indepen-
dentmultiethnic case–control study of ALL (14). Briefly, genome-
wide SNP-level P values for 709,059 variants across the genome
were obtained on 1,605 ALL case subjects of multiple ethnicities
and 6,661 controls (see ref. 14 for further details). Xu and
colleagues (14) inferred ancestry components using STRUCTURE
(28) on these data to assign individuals genome-wide propor-
tions of European, Native American, Asian, and African ancestry;
EuropeanAmericanswere defined as individualswith greater than
95% European ancestry and Hispanic Americans as individuals
withNative American ancestry that is greater than 10%andNative
American ancestry that is greater than African ancestry. Following
these guidelines, we classified 963 cases and 1,381 controls as
European American and 305 cases and 1,008 controls as Hispanic
American. We also classified 88 cases and 1,363 controls who had
greater than 70% African ancestry as African Americans; however,
wedid not analyze this sample further due to its small sample size.
All individuals were genotyped using the Affymetrix Human SNP
Array 6.0.

To test for additional replication of gene-level association
signals, we analyzed a dataset of 368 ALL case–parent trios. This
population has been described previously (25, 26). Briefly, all

individuals were genotyped using the Illumina Infinium Huma-
nExome Bead Chip. SNP-level P values for 237,436 exonic var-
iants throughout the genome were obtained through multino-
mial modeling, which was conducted using EMIM software (29).

All patient data described here have been previously analyzed
andpublished (14, 15, 25, 26). In this study, we analyze summary
statistics from these previous publications, with one exception:
For the replication dataset (14), we obtained genotype data from
dbGAP (project ID 6249, principal investigator: S. Ramachan-
dran) to calculate empirical LD for PEGASUS. Please see the
works by Xu and colleagues (15), Xu and colleagues (14), and
Archer and colleagues (25) for details about institutional
review of these studies and written informed consent.

Gene-level association testing
To identify genes associated with ALL in each of the two case–

control datasets and the trio analysis dataset, we performed gene-
level tests of association using PEGASUS (20). Briefly, individual
SNP statistics were drawn from a c2 distribution correlated by
empirical LD, and the distribution of the sum of correlated c2

statistics within a gene is the null distribution for gene-level
statistics; this distribution was then numerically integrated to
calculate a gene-level P value with machine precision (20). We
calculated gene-level P values or "scores" for 19,000 genes using
gene boundaries of 50,000 bp upstream and downstream of the
genes to account for regulatory regions; gene start and end posi-
tions were downloaded from the UCSC Genome Browser. For
PEGASUS testing onGWA results fromXuand colleagues (15),we
used genotype data from the 1000 Genomes EUR population as
proxies to calculate LD, as the case–control study included only
individuals of European descent (30). We used genotype data
from the multiethnic GWA study (14) to calculate empirical LD
for PEGASUS analysis. We used LD information empirically
calculated from the trios for the trio analysis-based gene-level
test (25, 26).

In addition to calculating gene scores for the multiethnic GWA
dataset (the "replication stage" dataset), we also calculate gene
scores separately for inferred European American cases and His-
panic Americans cases from this dataset to compare gene-level
association results between these two ancestries.

Pathway analysis
We performed pathway analysis with HotNet2 (27), a

topology-based method for finding significantly associated sub-
networks within protein–protein interaction (PPI) networks.
HotNet2 uses directed heat diffusion along interaction networks
where every gene, or a "node" in the network graph, has a "heat
score" based on its gene score. Although originally developed for
analyzing somatic mutation data from cancer datasets, HotNet2
has been used to uncover gene subnetworks significantly associ-
ated with common traits and diseases using P values from
GWA studies on common variants (20). We used negative
log-transformed gene scores generated by PEGASUS as heat scores
in HotNet2.

We used HotNet2 to find gene interaction subnetworks con-
taining genes that PEGASUS identifies as strongly associated with
ALL. As described by Nakka and colleagues (20), HotNet2 does
not perform well when too many genes are assigned similar heat
scores, so we use a gene score threshold determined by local FDR
(lFDR) for the GWA-based PEGASUS gene scores (15). We cal-
culated lFDR for PEGASUS gene scores using the twilight R
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package (31) and determined a cutoff for gene scores at the first
"elbow" or inflection point in the graph of 1 – lFDR against gene
scores (Supplementary Fig. S1).

In addition to gene scores, HotNet2 also requires a PPI network
(32–37) as input. A primary concern for selecting a PPI network for
our analysis here was the connectivity of previously associated ALL
genes in the networks; without immediate neighbors in the net-
work graph, a gene known to be associated with ALL will not be
included in the resulting gene subnetworksoutput byHotNet2.We
chose to combine the iRefIndex network (36) and KEGG pathway
database (34, 35) anduse the resulting combinednetwork as input
to HotNet2 because it contains at least 9 interactions for each ALL-
associated gene (Supplementary Table S2).

As there is no straightforwardway to test for replicationof entire
significant subnetworks identified using the discovery stage gene
scores as input, we instead attempted to replicate the individual
genes contained in these subnetworks in the replication gene score
dataset to a nominal significance threshold (gene P < 0.05).

Results
PEGASUS results based on case–control GWA p-values

We performed discovery-stage PEGASUS analysis using case–
control GWA P values (15). ARID5B, IKZF1, CDKN2A/2B, and
PIP4K2A all contain SNPs associated with ALL at a genome-wide
significant level in previous GWA and expression studies (8–13).
We then tested for replication of the 42 resulting gene hits (P <
10�3, Bonferroni-corrected for the number of haplotype blocks in
the genome; ref. 38) using a replication dataset of gene-level P
values calculated from a second dataset of case–control GWA P
values (Table 1; Supplementary Table S3; ref. 14). We find that
eight genes, ARID5B, IKZF1, FIGNL1, CDKN2A, CDKN2B, DDC,
PIP4K2A, and HLA-DQB1, are replicated (replication P values �
0.005309704). We also find that only ARID5B is replicated in the
trio-based gene-level PEGASUS analysis (replication P ¼ 1.61 �
10�6), and we ascribe this to the small sample size of the trio data
(Supplementary Table S4).

HotNet2 results using GWA-based PEGASUS scores as input
The subnetwork in Fig. 1A shows multiple genes involved in

hematopoiesis and leukemogenesis (39–42). MEIS1, PKNOX1,
HOXA2, HOXA5, HOXA7, HOXA11, HOXA13, and HOXB4
(shown in the subnetwork) are homeobox genes, which encode

the HOX transcription factors. HOX transcription factors bind to
DNA and regulate genes involved in the differentiation of the
embryo and also the differentiation, self-renewal, and prolifera-
tion of hematopoietic stem cells (39, 40). In leukemogenesis,
a chromosomal translocation, such as t(12;21), creates the TEL-
AML1 fusion gene, which retains binding domains necessary for
the homing of hematopoietic progenitor cells to the bonemarrow
and the DNA-binding component of a transcription factor called
core-binding factor (40). The fusion gene then initiates an abnor-
mal transcriptional cascade that affects the HOX genes down-
stream (40). The altered transcriptional cascade affects the differ-
entiation and self-renewal capacity of hematopoietic stem cells
(39, 40). Leukemogenesis can also be triggered via the HOX-
regulatory pathway through translocations involving the MLL
gene (41, 42). MLL fusion proteins have enhanced transcriptional
activity, which disrupts the normal pattern of HOX gene expres-
sion and leads to changes in self-renewal and growth of hemato-
poietic stem cells that eventually results in leukemia (40–42). We
note that SNPswithin these geneswereonlymarginally significant
(SNP P values: 0.007 < P < 0.2) in the GWA-level analysis and so
would have been missed by standard approaches to interpreting
GWA results. However, by using network analysis following
PEGASUS analysis of GWA P values, we were able to uncover
significant gene networks containing these homeobox genes.

SNPs located in the gene CEBPE (Fig. 1B) have been previously
associated with ALL in GWA studies at genome-wide significant
levels (P ¼ 4 � 10�10 and P ¼ 5.6 � 10�8; refs. 9, 43). CEBPE
encodes CCAAT/enhancer binding protein epsilon, which sup-
presses myeloid leukemogenesis and is mutated in a subset of
cases (9). Genes in the C/EBP family, such as CEBPG (also shown
in the subnetwork), are involved in hematopoietic cell develop-
ment, especially granulopoiesis (hematopoiesis of granulocytes),
and are sometimes targeted by recurrent immunoglobulin heavy
chain translocations in B-cell precursor ALL (9, 44). ATF5 (acti-
vating transcription factor 5) is a transcription factor that activates
the transactivation activity of C/EBP family members upon stim-
ulus by IL1B, a proinflammatory cytokine (45). Polymorphisms
in the ATF5 gene were associated with outcome after treatment of
ALL with asparaginase (46). MLLT6, which encodes myeloid/
lymphoid or mixed-lineage leukemia; translocated to, 6 protein,
is a gene that is commonly translocated in ALL to create an MLL
fusion gene, which encodes a chimeric protein that ultimately
leads to leukemia (47, 48). MLLT6 is part of a family of nuclear

Table 1. Case–control GWA-based PEGASUS gene hits

Gene ID Chromosome
Start position
(hg19)

End position
(hg19)

Discovery stage
PEGASUS P values:
GWA P values (15)

Replication stage
PEGASUS P values:
GWA P values (14)

ARID5Ba 10 63661012 63856707 2.22E�16 2.22E�16
IKZF1 7 50343678 50472798 2.22E�16 2.22E�16
FIGNL1 7 50511826 50518088 2.22E�16 2.22E�16
CDKN2A 9 21967750 21994490 1.97E�07 0.000928457
DDC 7 50526133 50633154 1.14E�05 4.82E�12
PIP4K2A 10 22823765 23003503 2.36E�05 4.45E�07
CDKN2B 9 22002901 22009312 0.000140848 1.66E�05
HLA-DQB1 6 32627240 32634466 0.000870177 0.005309704

NOTE: Table 1 shows case–control GWA-based PEGASUS gene hits. In the discovery-stage analysis, we apply PEGASUS to case–control GWA P values (15) using the
1000 Genomes Project EUR population (30) as a reference for LD. We then replicated eight of the 42 resulting gene hits (P < 10�3; Bonferroni-corrected for the
number of haplotype blocks in the genome; ref. 38), shown in bold above, by applying PEGASUS to a second dataset of case–control GWA P values (replication
P < 0.05; ref. 14). The full list of 42 gene hits is shown in Supplementary Table S3.
aARID5Bwas also replicated using the trio analysis-based PEGASUS replication test (replication P¼ 1.61� 10�6; Supplementary Table S4). ARID5B, IKZF1, CDKN2A/
2B, and PIP4K2A all contain SNPs previously associated with ALL in GWA studies (8–13).

Gene and Network Analysis of Acute Lymphoblastic Leukemia
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transcription factors (48). JAM2 (junctional adhesion molecule
2; Fig. 1B) belongs to the immunoglobulin superfamily and is
expressed by vascular endothelium and B lymphocytes. The level
of JAM2 expression defines B-cell differentiation stages, and the
encoded protein plays a role in the homing of B cells to lymphoid
organs (such as the spleen, bone marrow, and lymph nodes);
disruption of its normal activity leads to tumorigenesis (49). This
subnetwork shows genes such asCEBPE, which contains genome-
wide significant SNPs, interacting with other genes involved in
hematopoiesis. These networks have not been identified in pre-
vious pathway analyses on ALL (24).

Additional significant subnetworks from our analyses are
shown in Supplementary Figs. S2 and S3 and are annotated in
Supplementary Tables S5–S8 (9, 12, 50–70).

Ethnicity-specific HotNet2 results
ALL is known to have higher incidence and aworse prognosis in

patients with high levels ofNative American ancestry (14, 71).We
tested for germline signatures of this phenomenon by performing
gene and network analysis of European American cases and
controls and Hispanic American cases and controls in the mul-
tiethnic GWA dataset (14) separately (Fig. 2). We find that
although there are gene hits (PEGASUS P < 10�6) shared between
the two cohorts, such asARID5B, there are also 18 and 3 genes that
achieved significance in only the European American and His-
panic American cohorts, respectively (Fig. 2A). We also find that a
significant subnetwork centered on MEIS1 is only identified in
network analysis of the Hispanic American cohort-derived PEG-
ASUS gene scores and is missed in network analysis of the
European American cohort (Fig. 2B). These candidate genes were
not identified in a previous analysis of pathways in Hispanic
individuals and can represent useful targets for future functional
validation (24).

Gene set enrichment analysis with DAVID
We used significant genes (gene P < 10�3) resulting from

PEGASUS analysis on GWA P values as input to the gene set
enrichment analysis method DAVID (17, 18) to test for genome

annotation enrichment of GO terms and KEGG pathways. Five
annotation clusters achieved a significant enrichment score (great-
er than 1.3). The first category contains genes that are enriched for
GO terms involving regulation of monocyte, myeloid cell, and
leukocyte differentiation, such as IKZF1, JUN, CSF1, ACIN1, and
HIST4H4 (Table 2). Another category includes genes with anno-
tations related to hematopoiesis and immune system develop-
ment, such as DNASE2, CEBPA, KLF6, CEBPE, IKZF1, CSF1,
ACIN1, KLF1, and FLVCR1 (Table 2). These results broadly
confirm our results fromHotNet2 analysis in which we identified
multiple gene subnetworks involved in B-cell differentiation and
hematopoiesis.

Discussion
Here,wepresent a gene-level andnetwork analysis of published

case–control and family-based association studies that yield new
insight into the genomic underpinnings of ALL. Using the gene-
level association method PEGASUS, we confirmed and replicated
associations at multiple genes previously associated with ALL in
GWA studies, such as ARID5B, IKZF1, CDKN2A/B, and PIP4K2A,
and we identified novel gene associations (Table 1; Supplemen-
tary Table S3).We also found that the geneARID5B is replicated in
gene-level analysis of a multiethnic family-based association
study (Supplementary Table S4; refs. 25, 26).Our findings suggest
that gene and network analysis can be used to draw on multiple
data types (case–control and trio-based studies) and genotyping
platforms (exome-wide or genome-wide SNP chips) to yield new
insight into complex diseases like ALL; our approach can also be
used post hoc on published GWA studies, increasing the return on
investment of the GWA approach. Furthermore, we note that
although the SNP panels used in the three datasets analyzed here
vary drastically in both SNP density and content, using our
method, we are able to generate datasets of gene scores of similar
size that canbe compared directly (Table 1; Supplementary Tables
S3 and S4). We also note that the trio dataset had a small sample
size of trios and several monomorphic loci, which are uninfor-
mative for trio-based analyses (154,092 monomorphic SNPs of
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Figure 1.

HotNet2 results using PEGASUS gene scores as input. Figure 1 shows two subnetworks for ALL containing known ALL-associated loci from significant runs of
HotNet2 (P � 0.05 for multiple subnetwork sizes; ref. 27), using PEGASUS gene scores based on GWA SNP P values as input. A shows multiple HOX genes
involved in hematopoiesis and leukemogenesis, and B shows genes such as CEBPE, which contains genome-wide significant SNPs, interacting with other genes
involved in hematopoiesis. Circles represent genes in each subnetwork and are colored by heat score (negative log-transformed PEGASUS gene scores); the
color bar indicates the lowest heat score (blue or "cold" genes) and the highest heat score (red or "hot" genes) in each subnetwork. Lines between genes
indicate a direct gene–gene interaction from the iRefIndex (36) and KEGG (34, 35) databases. Genes that are bolded, italicized, and underlined represent genes with
nominally significant PEGASUS scores (HOXA13: replication P value ¼ 0.04; CEBPE: replication P value ¼ 9.20 � 10�10) in the replication GWA dataset (14).
Genes marked with the double dagger symbol (z) are genes that been associated with ALL or a related phenotype in previous GWA studies not analyzed here or
functional studies (9, 39–49).
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237,436 total SNPs, or 64.9%), which may account for the small
number of gene hits from the discovery dataset that were repli-
cated in this dataset (Supplementary Table S4). In the future,
PEGASUS can be used to jointly and quantitatively explore
differences between candidate genes derived from both case–
control and family-based association studies.

The goal of our study is similar to that of Hsu and colleagues
(24), to identify genes and gene sets associated with ALL risk, but
our approaches are quite distinct. First, PEGASUS (20) reports a
gene score for each gene in the genome that is sensitive to genes
containing multiple variants of moderate association with a trait
of interest while controlling for LD,whichmay varywith ancestral
background. The PEGASUS gene score allows for testing for
significant associations at the gene level, for gene set enrichment
analysis using known canonical pathways (Table 2), and for
detection of novel gene subnetworks associated with a
phenotype when used in conjunction with HotNet2 (Figs. 1
and 2). PEGASUS gene scores are not limited by preexisting
annotations and allow for the calculation of FDRs. Hsu and
colleagues (24) do not calculate gene scores, but instead use a
GWA SNP-level threshold (P < 0.001) to identify candidate genes
for gene set enrichment analysis. We also note that the pathways
that Hsu and colleagues (24) identify do not contain a number of
known ALL-associated genes, whereas our network and pathway
results (Figs. 1 and 2; Table 2) contain genes such as CEPBE and
IKZF1, which have been identified previously in GWA studies of
ALL. The candidate genes identified by both these studies yield
new insight into the pathogenesis of ALL; further studies may
integrate both approaches and test whether different molecular
subtypes of ALL are characterized by differing genetic architecture
(see Table 2 in the work by Hsu and colleagues; ref. 24).

After network analysis with HotNet2 (27) using our PEGASUS
results as input, we found multiple significant gene interaction
networks containing genes previously associated with ALL and

leukemogenesis, such asCEBPE andMEIS1 (Fig. 1). A subnetwork
centering on CEBPE contains genes in the C/EBP family and
other interacting genes, which are transcription factors involved
in hematopoiesis and are thought to suppress leukemogenesis
and, thus, may influence the development of ALL. In addition,
we note that although MEIS1 and other HOX genes have been
suspected to influence leukemogenesis (39–42), germline var-
iants in MEIS1 have failed to achieve genome-wide significance
in any GWA study performed to date on ALL (8–15). However,
we do identify MEIS1 and other interacting HOX genes as
significantly mutated in cases by using PEGASUS gene scores
as input to network analysis with HotNet2. Thus, PEGASUS,
along with gene set enrichment analyses or HotNet2, can be
applied after case–control association studies to gain additional
insight into associated loci that are missed by the GWA frame-
work, thus yielding new insight into disease from previously
published GWA studies.

We also uncover multiple novel gene interaction subnet-
works that may influence ALL risk. For example, we identify a
network centered around the TNKS pathway that is involved in
miRNA-mediated transcriptional regulation that may be
involved in ALL risk (58–63), and we uncover a gene subnet-
work containing UNC93B1 and other genes that plays an
important role in innate and adaptive immunity (Supplemen-
tary Fig. S2; Supplementary Tables S6 and S7; refs. 64–66). An
open question in the literature is whether genes associated with
ALL in GWA studies (such as CEBPE, IKZF1, ARID5B, etc.) work
in concert to influence the phenotype or through separate
pathways. In our network analysis, we find genes such as
CEBPE, MEIS1, andDDC are contained in distinct subnetworks.
Thus, we conclude that ALL cases may contain heterogeneous
sets of mutations that influence leukemogenesis via multiple
subnetworks; however, further experiments are needed to test
this result. Taken together, these network results provide new

A Gene subnetwork found using Hispanic
American cohort PEGASUS P values as input
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MACROD2 [p ≤ 4.68 x 10-7]
CACNA1C [p ≤ 1.91 x 10-13]
NAV2 [p ≤ 1.24 x 10-10]

PCDH9
[3.94 x 10-7]
CNTN4
[7.76 x 10-7]
MLLT4
[9.88 x 10-7]

Gene hits in European American
cases and controls (PEGASUS P value)

Shared gene hits 
(larger of two PEGASUS P values)

Gene hits in Hispanic American     
cases and controls
(PEGASUS p 

Figure 2.

Ethnicity-specific PEGASUS and HotNet2 results. Using PEGASUS, we calculated gene-level P values using GWA SNP P values from association studies on
European American cases and controls and Hispanic American cases and controls (14). The Venn diagram in A, 18 significant gene hits (PEGASUS
P values < 10�6) in the European American cohort only (red), 3 significant gene hits in the Hispanic American cohort only (blue), and 5 significant gene hits in
both cohorts (purple). B, A gene subnetwork found using PEGASUS gene scores derived from the Hispanic American cohort as input. Bold, italicized, and
underlined genes are genes that are replicated in the European American cohort (PEGASUS P < 0.05).
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hypotheses regarding the etiology and mechanism of ALL onset
that can be investigated further in functional studies.

Finally, we performed gene and network analysis of European
American cases and controls and Hispanic American cases and
controls in the multiethnic GWA dataset (14) separately (Fig. 2).
We found gene hits (PEGASUS P < 10�6) that were shared
between the two cohorts, but also 18 and 3 genes that achieved
significance in only the European American and Hispanic Amer-

ican cohorts, respectively (Fig. 2A). A significant subnetwork
centered on MEIS1 was also identified in network analysis of the
Hispanic American cohort-derived PEGASUS gene scores, but not
in network analysis of the European American cohort (Fig. 2B).
This result reaffirms the need for multiethnic association studies
of complex diseases to fully determine howmutations interact to
produce complex traits and how treatments can best target com-
plex diseases across ethnicities.

Table 2. Genome annotation enrichment clusters

Annotation Enrichment Score: 2.098930503473424
cluster 1 Term P Genes

GO:0045657: positive regulation of monocyte
differentiation

4.62E�04 JUN, CSF1, ACIN1

GO:0045655: regulation of monocyte
differentiation

9.16E�04 JUN, CSF1, ACIN1

GO:0002763: positive regulation of myeloid
leukocyte differentiation

0.001361426 IKZF1, JUN, CSF1, ACIN1

GO:0045639: positive regulation of myeloid cell
differentiation

0.007937827 IKZF1, JUN, CSF1, ACIN1

GO:0045637: regulation of myeloid cell
differentiation

0.011372639 HIST4H4, IKZF1, JUN, CSF1, ACIN1

GO:0002761: regulation of myeloid leukocyte
differentiation

0.014424008 IKZF1, JUN, CSF1, ACIN1

Annotation Enrichment score: 1.600658678135878
cluster 2 Term P Genes

Topological domain: Lumenal 0.002991392 TCIRG1, GCNT4, TPST2, ST6GAL2, GOLT1B, IGF2R, LMAN2L, CSF1, ASPHD2,
GALNT4, EXT1, ABO, PPAP2B, MOXD1

Golgi apparatus 0.011871437 TPST2, GCNT4, ST6GAL2, AP1G2, GOLT1B, LMAN2L, GALNT4, TMF1, SGSM1,
TNKS, PTGFRN, EXT1, ABO, PPAP2B, GOLGA4

Annotation Enrichment score: 1.5412837811532563
cluster 3 Term P Genes

GO:0030099: myeloid cell differentiation 0.001081276 DNASE2, CEBPA, CEBPE, CSF1, ACIN1, KLF1, FLVCR1
GO:0030225: macrophage differentiation 0.004134616 CEBPA, CEBPE, CSF1
GO:0030097: hemopoiesis 0.009664139 DNASE2, CEBPA, KLF6, CEBPE, IKZF1, CSF1, ACIN1, KLF1, FLVCR1
GO:0030218: erythrocyte differentiation 0.016399444 DNASE2, ACIN1, KLF1, FLVCR1
GO:0048534: hemopoietic or lymphoid organ
development

0.016484328 DNASE2, CEBPA, KLF6, CEBPE, IKZF1, CSF1, ACIN1, KLF1, FLVCR1

GO:0002520: immune system development 0.022674988 DNASE2, CEBPA, KLF6,CEBPE, IKZF1, CSF1, ACIN1, KLF1, FLVCR1
GO:0034101: erythrocyte homeostasis 0.023193847 DNASE2, ACIN1, KLF1, FLVCR1
GO:0048872: homeostasis of number of cells 0.036577024 DNASE2, CSF1, ACIN1, KLF1, FLVCR1

Annotation Enrichment score: 1.4825623926872973
cluster 4 Term P Genes

GO:0046983: protein dimerization activity 0.011842272 CEBPA, CHKA, IKZF1, CEBPE, CSF1, HPS4, EEA1, RRAGC, ABCG8,
CDH13, ABCG5, JUN, UBA3,GYS2, EXT1

GO:0042802: identical protein binding 0.041495104 CEBPA, CHKA, CEP72, CEBPE, CSF1, HPS4, FBP1, FHL2, EEA1,
GUCY2D, CDH13, DOK2,GYS2, EXT1, PHLDA3

Annotation Enrichment score: 1.3866597881487874
cluster 5 Term P Genes

GO:0034637: cellular carbohydrate biosynthetic
process

0.001691251 GLT25D1, FBP1, GYS2, FBP2, EXT1, PPARGC1A

GO:0016051: carbohydrate biosynthetic process 0.01096541 GLT25D1, FBP1, GYS2, FBP2, EXT1, PPARGC1A
GO:0033692: cellular polysaccharide biosynthetic
process

0.041446472 GLT25D1, GYS2, EXT1

NOTE: Table 2 shows genome annotation enrichment clusters for ALL-associated genes. We performed GO and KEGG pathway annotation enrichment
analysis using DAVID (17, 18) for gene scores generated from GWA results. We find that five annotation clusters achieved a significant enrichment score
(greater than 1.3). Significant annotations (P < 0.05) within these clusters include hematopoiesis, immune system development, erythrocyte differentiation,
and regulation of monocyte differentiation. Gene names that are bold represent genes that appear in significant HotNet2 gene subnetworks in this study
(Fig. 1; Supplementary Figs. S2 and S3).
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Our study uses novel methodology to quantitatively combine
SNP-level GWA analyses of ALL, and we characterize candidate
genes and gene subnetworks that may influence ALL risk using
multiple large, case–control datasets and a trio dataset with
affected children. One limitation of this study is that we rely
exclusively on genotype data to replicate our results, as opposed to
functional experiments. Still, gene set enrichment analysis and
previous studies of hematopoiesis and leukemogenesis confirm
that genes identified as ALL-associated by our quantitative frame-
work are biologically relevant toALLonset andprogression (Table
2). Another caveat of our analysis is that we do not have GWA
SNP-level P values for different molecular subtypes of ALL for the
datasets analyzed here, and so we analyze all subtypes of B-cell
ALL cases together. When larger datasets of ALL patients become
available,molecular subtypes of ALL could be analyzed separately
using our approach to test whether genetic heterogeneity under-
lies risk for different subtypes of ALL. We also lacked sufficient
sample size to analyze African American cases and controls
separately; when large enough datasets become available, we can
carry out further ethnicity-specific analyses using our method. In
addition, one challenge that future gene-level association studies
should address is producing effect size estimates for gene asso-
ciation scores. Finally, our network analysis using HotNet2 is
dependent on publicly available PPI network databases for infor-
mation about gene interactions, which may be incomplete and
may contain inaccuracies.

Our study is the first systematic gene and network analysis of
multiple ALL datasets, including exome- and genome-wide case–
control studies and a case–parent association study, resulting in
novel candidate loci and gene interactions that may lend new
insight into the genomic underpinnings of ALL. In particular, we
findmultiple significant gene subnetworks containing previously
identified ALL susceptibility loci that appear to instigate leuke-
mogenesis throughmultiple different pathways and, thus,may be
independent risk loci. PEGASUS, when combined with network
analysis, offers a new, powerful approach for identifying shared
and unique signals of gene-level associations in complex traits
across multiple GWA datasets and can be similarly extended to
integrate analysis of multiple data types (e.g., gene expression
data, somatic data, and germline mutations).
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